Linear Projections of the Vandermonde Polynomial
نویسندگان
چکیده
An n-variate Vandermonde polynomial is the determinant of the n × n matrix where the ith column is the vector (1, xi, x 2 i , . . . , x n−1 i ) T . Vandermonde polynomials play a crucial role in the theory of alternating polynomials and occur in Lagrangian polynomial interpolation as well as in the theory of error correcting codes. In this work we study structural and computational aspects of linear projections of Vandermonde polynomials. Firstly, we consider the problem of testing if a given polynomial is linearly equivalent to the Vandermonde polynomial. We obtain a deterministic polynomial time algorithm to test if f is linearly equivalent to the Vandermonde polynomial when f is given as product of linear factors. In the case when f is given as a black-box our algorithm runs in randomized polynomial time. Exploring the structure of projections of Vandermonde polynomials further, we describe the group of symmetries of a Vandermonde polynomial and show that the associated Lie algebra is simple. Finally, we study arithmetic circuits built over projections of Vandermonde polynomials. We show universality property for some of the models and obtain a lower bounds against sum of projections of Vandermonde determinant.
منابع مشابه
New Bases for Polynomial-Based Spaces
Since it is well-known that the Vandermonde matrix is ill-conditioned, while the interpolation itself is not unstable in function space, this paper surveys the choices of other new bases. These bases are data-dependent and are categorized into discretely l2-orthonormal and continuously L2-orthonormal bases. The first one construct a unitary Gramian matrix in the space l2(X) while the late...
متن کاملDisplacement Structure Approach to Polynomial Vandermonde and Related Matrices
In this paper we introduce a new class of what we shall call polynomial Vandermonde-like matrices. This class generalizes the polynomial Vandermonde matrices studied earlier by various authors, who derived explicit inversion formulas and fast algorithms for inversion and for solving the associated linear systems. A displacement structure approach allows us to carry over all these results to the...
متن کاملDisplacement Structure Approach to PolynomialVandermonde and Related
||||||||||||||||||||||||||||||||||||||| ABSTRACT In this paper we introduce a new class of what we shall call polynomial Vandermonde-like matrices. This class generalizes the polynomial Vandermonde matrices studied earlier by various authors, who derived explicit inversion formulas and fast algorithms for inversion and for solving the associated linear systems. A displacement structure approach...
متن کاملNumerical Differentiation and the Solution of Multidimensional Vandermonde Systems
We define multidimensional Vandermonde matrices (MV) to be certain submatrices of Kronecker products of standard Vandermonde matrices. These MV matrices appear naturally in multidimensional problems of polynomial interpolation. An explicit algorithm is produced to solve systems of linear equations with MV matrices of coefficients. This is an extension of work of Stenger for the two-dimensional ...
متن کاملA Björck-Pereyra-type algorithm for Szegö-Vandermonde matrices based on properties of unitary Hessenberg matrices1
In this paper we carry over the Björck-Pereyra algorithm for solving Vandermonde linear systems to what we suggest to call Szegö-Vandermonde systems VΦ(x), i.e., polynomialVandermonde systems where the corresponding polynomial system Φ is the Szegö polynomials. The properties of the corresponding unitary Hessenberg matrix allow us to derive a fast O(n2) computational procedure. We present numer...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Electronic Colloquium on Computational Complexity (ECCC)
دوره 24 شماره
صفحات -
تاریخ انتشار 2017